I understand the summaries and I used to build drivers (a long time ago)
there is a link on redhat on
tuning the fixes
https://access.redhat.com/articles/3311301https://access.redhat.com/articles/3307751 Measureable: 8-19% - Highly cached random memory, with buffered I/O, OLTP database workloads, and benchmarks with high kernel-to-user space transitions are impacted between 8-19%. Examples include OLTP Workloads (tpc), sysbench, pgbench, netperf (less than 256 byte), and fio (random I/O to NvME).
Modest: 3-7% - Database analytics, Decision Support System (DSS), and Java VMs are impacted less than the “Measurable” category. These applications may have significant sequential disk or network traffic, but kernel/device drivers are able to aggregate requests to moderate level of kernel-to-user transitions. Examples include SPECjbb2005, Queries/Hour and overall analytic timing (sec).
Small: 2-5% - HPC (High Performance Computing) CPU-intensive workloads are affected the least with only 2-5% performance impact because jobs run mostly in user space and are scheduled using cpu-pinning or numa-control. Examples include Linpack NxN on x86 and SPECcpu2006.
Minimal: Linux accelerator technologies that generally bypass the kernel in favor of user direct access are the least affected, with less than 2% overhead measured. Examples tested include DPDK (VsPERF at 64 byte) and OpenOnload (STAC-N). Userspace accesses to VDSO like get-time-of-day are not impacted. We expect similar minimal impact for other offloads.
NOTE: Because microbenchmarks like netperf/uperf, iozone, and fio are designed to stress a specific hardware component or operation, their results are not generally representative of customer workload. Some microbenchmarks have shown a larger performance impact, related to the specific area they stress.
"Science is the belief in the ignorance of the experts" – Richard Feynman